Reprinted from MACHINE
LANGUAGE PROGRAMMING
FOR THE “8008” (and similar
microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

MACHINE LANGUAGE

Chapter |

THE ‘8008" CPU INSTRUCTION SET

The *B008' microprocessor has quite a
comprehensive instruction set that consists
of 48 basic instructions, which, when the
possible permutations are considered, result
in a total set of about 170 instructions.

The instruction set allows the user to direct
the computer to perform operations with
memory, with the seven basic registers in the
CPU, and with INPUT and OUTPUT ports.

It should be pointed out that the seven
basic registers in the CPU consist of one
“accumulator,” a register that can perform
mathematical and logic operations, plus an
additional six registers, which, while not
having the full capability of the accumulator,
can perform various useful operations. These
operations include the ability to hold data,
serve as an ‘“‘operator” with the accumulator,
and increment or decrement their contents.
Two of these six registers have special sig-
nificance because they may be used to serve
as a ‘“pointer” to locations in memory.

The seven CPU registers have arbitrarily
been given symbols so that we may refer to
them in an abbreviated language. The first
register is designated by the symbol ‘A’ in the
following discussion and will be referred to
as the “accumulator™ register. The next four
registers will be referred to as the ‘B,’ ‘C," ‘D’
and ‘E’ registers. The remaining two special
memory pointing registers shall be designated
the ‘H’ (for the HIGH portion of a memory
address) and the ‘L’ (for the LOW portion of
a memory address) registers.

The CPU also has several “flip-flops™ which
shall be referred to as “FLAGS.” The flip-
flops are set as the result of certain operations
and are important because they can be ‘“‘test-
ed” by many of the instructions with the in-
struction’s meaning changing as a conse-
quence of the particular status of a FLAG at
the time the instruction is executed. There are
four basic flags which will be referred to in
this manual. They are defined as follows:

The ‘C’ flag refers to the carry bit status. The carry bit is a one unit register which
changes state when the accumulator overflows or underflows. This bit can also be
set to a known condition by certain types of instructions. This is important to
remember when developing a program because quite often a program will have a
long string of instructions which do not utilize the carry bit or care about its status,
but which will be causing the carry bit to change its state from time-to-time. Thus,
when one prepares to do a series of operations that will rely on the carry bit, one
often desires to set the carry bit to a known state.

The *Z’ for zero flag refers to a one unit register that when desired will indicate
whether the value of the accumulator is exactly equal to zero. In addition, immed-
iately after an increment of decrement of the B, C, D, E, H or L registers, this flag
will also indicate whether the increment or decrement caused that particular register
to go to zero.

The ‘S’ for sign flag refers to a one unit register that indicates whether the value
in the accumulator is a positive or negative value (based on two’s complement
nomenclature). Essentially, this flag monitors the most significant bit in the accumu-
lator and is *“*set” when it is a one,

The ‘P’ flag refers to the last flag in the group which is for indicating when the
accumulator contains a value which has even parity, Parity is useful for a number of
reasons and is usually used in conjunction with testing for error conditions on
words of data especially when transferring data to and from external devices. Even
parity occurs when the number of bits that are a logic one in the accumulator is an
even value. Zero is considered an even value for this purpose. Since there are eight
bits in the accumulator, even parity will occur when zero, two, four or six bits are in
the logic one condition regardless of what order they may appear in within the
register.

30

It is important to note that the Z, 5, and
P flags (as well as the previously mentioned
C flag) can all be set to known states by
certain instructions. It is also important to
note that some instructions do not result
in the flags being set so that if the program-
mer desires to have the program make
decisions based on the status of flags, the
programmer should ensure that the proper
instruction, or sequence of instructions
is utilized. It is particularly important to
note that/load register instructions do not
by themsélves set the flags. Since it is often
desirable to obtain a data word (that is,
load it into the accumulator) and test its
status for such parameters as whether or
not the value is zero, or a negative number,
and so forth, the programmer must remember
to follow a load instruction by a logical
instruction (such as the NDA - “and the
accumulator™) in order to set the flags before
using an instruction that is conditional in
regards to a flag’s status.

The description of the various types of
instructions available using an ‘8008’ CPU
which follows will provide both the machine
language code for the instruction given as
three octal digits, and also a mnemonic name
suitable for writing programs in “symbaolic™
type language which is usually easier than
trying to remember octal codes! It may be
noted that the symbolic language used is the
same as that originally suggested by Intel
Corporation which developed the ‘8008
CPU-on-a-chip. Hence users who may already
be familiar with the suggested mnemonics
will not have any relearning problems and
those learning the mnemonics for the first
time will have plenty of good company.
If the programmer is not already aware of
it, the use of mnemonics facilitates working
with an “assembler’” program when it is
desired to develop relatively large and
complex programs. Thus the programmer is
urged to concentrate on learning the
mnemonics for the instructions and not
waste time memorizing the octal codes. After
a program has been written using the
mnemonic codes, the programmer can always
use a lookup table to convert to the machine
code if an assembler program is not avail-
able. It’s a lot easier technigue (and less
subject to error) than trying to memorize

BYTE Reprint

PROGRAMMING FOR THE “8008”

and similar microcomputers

the 170 or so three digit combinations which
make up the machine instruction code set!

The programmer must also be aware, that
in this machine, some instructions require
more than one word in memory.
“Immediate” type commands require two
consecutive words. JUMP and CALL
commands require three consecutive words.
The remaining types only require one word.

The first group of instructions to be
presented are those that are used to load
data from one CPU register to another, or
from a CPU register to a word in memory,
or vice-versa. This group of instructions
requires just one word of memory. It is
important to note that none of the
instructions in this group affect the flags.

LOAD DATA FROM ONE CPU REGISTER
TO ANOTHER CPU REGISTER

MNEMONIC MACHINE CODE
LAA 300
LBA 310
LAB 301

The load register group of instructions
allows the programmer to move the contents
of one CPU register into another CPU regis-
ter. The contents of the originating (from)
register is not changed. The contents of the
destination (to) register becomes the same as
the originating register. Any CPU register can
be loaded into any CPU register. Note that
loading register A into register A is essen-
tially a NOP (no operation) command. When
using mnemonics the load symbol is the letter
L followed by the “to" register and then the
“from" register. The mnemonic LBA means
that the contents of register A (the accumu-
lator) is to be loaded into register B. The
mnemonic LAB states that register B is to
have its contents loaded into register A.
It may be observed that this basic instruc-
tion has many variations. The machine lan-
guage coding for this instruction is in the
same format as the mnemonic code except
that the letters used to represent the registers
are replaced by numbers that the computer

can use. Using octal code, the seven CPU
registers are coded as follows:

Register A =0
Register B=1
Register C = 2
Register D = 3
Register E = 4
Register H =5
Register L =6

Also, since the machine can only utilize
numbers, the octal number ‘3’ in the most
significant location of a word signifies that
the computer is to perform a “load” opera-
tion. Thus, in machine coding, the instruc-
tion for loading register B with the contents
of register A becomes ‘310’ (in octal form).
Or, if one wanted to get very detailed, the
actual binary coding for the eight bits of
information in the instruction word would
be ‘11 001 000." It is important to note
that the load instructions do not affect any
of the flags.

LOAD DATA FROM ANY CPU REGISTER
TO A LOCATION IN MEMORY

LMA 370
LMB 371
LMC 372
LMD 373
LME 374
LMH 375
LML 376

This instruction is very similar to the
previous group of instructions except that
now the contents of a CPU register will be
loaded into a specified memory location. The
memory location that will receive the con-
tents of the particular CPU register is that
whose address is specified by the contents of
the CPU H and L registers at the time the in-
struction is executed. The H CPU register
specifies the HIGH portion of the address
desired, and the L CPU register specifies the
LOW portion of the address into which data
from the selected CPU register is to be loaded.
Note that there are seven different instruc-

31

tions in this group. Any CPU register can have
its contents loaded into any location in mem-
ory. This group of instructions does not
affect any of the flags.

LOAD DATA FROM A MEMORY
LOCATION TO ANY CPU REGISTER

LAM 307
LBM 317
LCM 327
LDM 337
LEM T @ .+ 347
LHM 357
LLM 367

This group of instructions can be consid-
ered the opposite of the previous group.
Now, the contents of the word in memory
whose address is specified by the H (for
HIGH portion of the address) and L (LOW
portion of the address) registers will be
loaded into the CPU register specified by the
instruction. Once again, this group of in-
structions has no affect on the status of the
flags.

LOAD IMMEDIATE DATA INTO A
CPU REGISTER

LAI 006
LBI 016
LCI 026
LDI 036
LEI 046
LHI 056
LLI 066

An IMMEDIATE type of instruction
requires two words in order to be complet-
ely specified. The first word is the instruc-
tion itself. The second word, or “immed-
iately following” word, must contain the
data upon which “immediate”” action is
taken. Thus, a load IMMEDIATE instruc-
tion in this group means that the contents
of the word immediately following the in-
struction word is to be loaded into the speci-
fied register. For example, a typical load im-
mediate instruction would be LAI 001.
This would result in the value 001 (octal)
being placed in the A register when the in-
struction was executed. It is important to
remember that all IMMEDIATE type in-

structions MUST be followed by a data word.
An instruction such as LDI by itself would
result in improper operation because the
computer would assume the next word con-
tained data. If the programmer had mistaken-
ly left out the data word, and in its place had
another instruction, the computer would not
realize the operator’s mistake. Hence the pro-
gram would be fouled-up! Note too, that the
load immediate group of instructions does not
affect the flags.

LOAD IMMEDIATE DATA INTO A
MEMORY LOCATION

LMI 076

This instruction is essentially the same as
the load immediate into the CPU register
group except that now, using the contents of
the H and L registers as “pointers” to the de-
sired address in memory, the contents of the
“immediately following word” will be placed
in the memory location specified. This in-
struction does not affect the status of the
flags.

The above rather large group of LOAD in-
structions permits the programmer to direct
the computer to move data about. They
are used to bring in data from memory where
it can be operated on by the CPU. Or, to
temporarily store intermediate results in the
CPU registers during complicated and ex-
tended calculations, and of course allow data,
such as results, to be placed back into mem-
ory for long term storage. Since none of them
will alter the contents of the four CPU flags,
these instructions can be called upon to set
up data before instructions that may affect
or utilize the flag's status are executed. The
programmer will use instructions from this
set frequently. The mnemonic names for the
instructions are easy to remember as they are
well ordered. The most important item to
remember about the mnemonics is that the
TO register is always indicated first in the
mnemonic, and then the FROM register.
Thus LBA equals “load TO register B FROM
register A.

INCREMENT THE VALUE OF A
CPU REGISTER BY ONE

INB 010
INC 020
IND 030
INE 040
INH 050
INL 060

This group of instructions allows the pro-
grammer to add one to the present value of
any of the CPU registers except the accumu-
lator. (Note carefully that the accumulator
can NOT be incremented by this type of in-
struction. In order to add one to the accumu-
lator a mathematical addition instruction,
described later, must be used.) This instruc-
tion for incrementing the defined CPU regi-
sters is very valuable in a number of appli-
cations. For one thing, it is an easy way to
have the L register successively “point” to a
string of locations in memory. A feature that
makes this type of instruction even more

powerful is that the result of the incremented
register will affect the Z, S, and P flags. (Its
will not change the C or “carry”flag.) Thus,
after a CPU register has been incremented by
this instruction, one can utilize a flag test in-
struction (such as the conditional JUMP and
CALL instructions to be described later) to
determine whether that particular register has
a value of zero (Z flag), or if it is a negative
number (S flag), or even parity (P flag). It is
important to note that this group of instruc-
tions, and the decrement group (described in
the next paragraph) are the only instructions
which allow the flags to be manipulated by
operations that are not concerned with the
accumulator (A) register.

DECREMENT THE VALUE OF A
CPU REGISTER BY ONE

DCB 011
DCC 021
DCD 031
DCE 041
DCH 051
DCL 061

The DECREMENT group of instructions
is similar to the INCREMENT group except
that now the value one will be subtracted
from the specified CPU register. This in-
struction will not affect the C flag. But, it
does affect the Z, S, and P flags. It should
also be noted that this group, as with the
increment group, does not include the
accumulator register. A separate mathemat-
ical instruction must be used to subtract one
from the accumulator.

ARITHMETIC INSTRUCTIONS USING THE
ACCUMULATOR

The following group of instructions allow
the programmer to direct the computer to
perform arithmetic operations between other
CPU registers and the accumulator, or be-
tween the contents of words in memory and
the accumulator. All of the operations for the
described addition, subtraction, and compare
instructions affect the status of the flags.

ADD THE CONTENTS OF A CPU
REGISTER TO THE ACCUMULATOR

ADA 200
ADB 201
ADC 202
ADD 203
ADE 204
ADH 205
ADL 206

This group of instructions will simply ADD
the present contents of the accumulator
register to the present value of the speci-
fied CPU register and leave the result in the
accumulator. The value of the specified
register is unchanged except in the case of
the ADA instruction. Note that the ADA
instruction essentially allows the program-
mer to double the value of the accumulator
(which is the A register)! If the addition

32

causes an overflow or underflow then the
carry (C flag) will be affected.

ADD THE CONTENTS OF A CPU
REGISTER PLUS THE VALUE.OF THE
CARRY FLAG TO THE ACCUMULATOR

ACA 210
ACB 211
ACC 212
ACD 213
ACE 214
ACH 215
ACL 216

This group is identical to the previous
group except that the content of the carry
flag is considered as an additional bit (MSB)
in the specified CPU register. The combined
value of the carry bit plus the contents of the
specified CPU register are added to the value
in the accumulator. The results are left in the
accumulator. Again, with the exception of
the ACA instruction, the contents of the
specified CPU register are left unchanged.
Again too, the carry bit (C flag) will be
affected by the results of the operation.

SUBTRACT THE CONTENTS OF A CPU
REGISTER FROM THE ACCUMULATOR

SUA 220
SUB 221
suc 222
SUD 223
SUE 224
SUH 225
SUL 226

This group of instructions will cause the
present value of the specified CPU register to
be subtracted from the value in the accumu-
lator. The value of the specified register is not
changed except in the case of the SUA in-
struction, (Note that the SUA instruction
is a convenient instruction with which to
“clear” the accumulator.) The carry flag
will be affected by the results of a
SUBTRACT instruction.

SUBTRACT THE CONTENTS OF A CPU
REGISTER AND THE VALUE OF THE
CARRY FLAG FROM THE

ACCUMULATOR
SBA 230
SBB 231
SBC 232
SBD 233
SBE 234
SBH 235
SBL 236

This group is identical to the previous
group except that the content of the carry
flag is considered as an additional bit (MSB)
in the specified CPU register. The combined
value of the carry bit plus the contents of the
specified CPU register are SUBTRACTED
from the value in the accumulator. The re-
sults are left in the accumulator. The carry

bit (C flag) is affected by the result of the
operation. With the exception of the SBA
instruction the content of the specified CPU
register is left unchanged.

COMPARE THE VALUE IN THE
ACCUMULATOR AGAINST THE
CONTENTS OF A CPU REGISTER

CPA 270
CPB 271
CPC 272
CPD 273
CPE 274
CPH 275
CPL 276

The COMPARE group of instructions
are a very powerful and somewhat unique
set of instructions. They direct the com-
puter to compare the contents of the
accumulator against another register and to
set the flags as a result of the comparing
operation. It is essentially a subtraction
operation with the wvalue of the specified
register being subtracted from the value of
the accumulator except that the value of the
accumulator is not actually altered by the
operation. However, the flags are set in the
same manner as though an actual subtrac-
tion operation had occured. Thus, by sub-
sequently testing the status of the various
flags after a COMPARE instruction has been
executed, the program can determine whether
the compare operation resulted in a match or
non-match. In the case of a non-match, one
may determine if the compared register con-
tained a value greater or less than that in the
accumulator. This would be accomplished by
testing the Z flag and C flag respectively
utilizing a conditional JUMP or CALL in-
struction (which will be described later).

ADDITION, SUBTRACTION, AND
COMPARE INSTRUCTIONS THAT USE
WORDS IN MEMORY AS OPERANDS

The five types of mathematical operations:
ADD, ADD with CARRY, SUBTRACT,
SUBTRACT with CARRY, and COMPARE,
which have just been presented for the cases
where they operate with the contents of CPU
registers, can all be performed with words
that are -in memory. As with the LOAD in-
structions that operate with memory, the H
and L registers must contain the address of
the word in memory that it is desired to
ADD, SUBTRACT, or COMPARE to the
accumulator. The same conditions for the
operations as was detailed when using the
CPU registers apply. Thus, for mathematical
operations with a word in memory, the fol-
lowing instructions are used.

ADD THE CONTENTS OF A MEMORY
WORD TO THE ACCUMULATOR
ADM 207
ADD THE CONTENTS OF A MEMORY
WORD PLUS THE VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR

ACM 217

SUBTRACT THE CONTENTS OF A
MEMORY WORD FROM THE
ACCUMULATOR

SUM 227

SUBTRACT THE CONTENTS OF A

MEMORY WORD AND THE VALUE

OF THE CARRY FLAG FROM THE
ACCUMULATOR

SBM 2317

COMPARE THE VALUE IN THE
ACCUMULATOR AGAINST THE
CONTENTS OF A MEMORY WORD

CPM 271

IMMEDIATE TYPE ADDITIONS,
SUBTRACTIONS, AND COMPARE
INSTRUCTIONS

The five types of mathematical opera-
tions discussed above can also be performed
with the operand being the word of data
immediately after the instruction. This group
of instructions is similar in format to the
previously described LOAD IMMEDIATE
instructions. The same conditions for the
mathematical operations as discussed for the
operations with the CPU registers apply.

ADD IMMEDIATE

ADI 004

ADD WITH CARRY IMMEDIATE

ACI 014

SUBTRACT IMMEDIATE

SuUl 024

SUBTRACT WITH CARRY IMMEDIATE

SBI 034

COMPARE IMMEDIATE

CPI1 074

LOGICAL INSTRUCTIONS WITH THE
ACCUMULATOR

There are several groups of instructions
which allow BOOLEAN LOGIC operations to
be performed between the contents of the
CPU registers and the A (accumulator) regis-
ter. In addition there are logic IMMEDIATE
type instructions. The boolean logic opera-
tions are valuable in a number of program-
ming applications. The instruction set allows
three basic boolean operations to be per-
formed. These are: the LOGICAL AND, the
LOGICAL OR, and the EXCLUSIVE OR

operations. Each type of logic operation is
performed on a bit-by-bit basis between the
accumulator and the CPU register or memory
location specified by the instruction. A de-
tailed explanation of each type of logic
operation, and the appropriate instructions
for each type is presented below. The logic
instruction set is also valuable because all of
them will cause the C (carry) flag to he placed
in the zero condition. This is important if
one is going to perform a sequence of in-
structions that will eventually use the status
of the C flag to arrive at a decision as it
allows the programmer to set the C flag to
a known state at the start of the sequence.
All other flags are set in accordance with the
result of the logic operation. Hence, the group
often has value when the programmer desires
to determine the contents of a register that
has just been loaded into a register. (Since
the load instructions do not alter the flags.)

THE BOOLEAN ‘AND’ OPERATION
INSTRUCTION SET

When the boolean AND instruction is ex-
ecuted, each hit of the accumulator will be
compared with the corresponding bit in he
register or memory location specified by the
instruction. As each bit is compared a logic
result will be placed in the accumulator for
each bit comparison. The logic result is de-
termined as follows. If hoth the bit in the
accumulator and the bit in the register with
which the operation is being performed are a
logic one, then the accumulator hit will be
left in the logic one condition. For all other
possible {‘Omhinatidﬁs LA bit equals one, X
bit equals zero: A bit equals zero, X bit equals
one; or A bit equals zero, X hit equals zero),
then the accumulator bit will be cleared to
the zero state. An example will illustrate the
logical AND operation.

INITIAL STATE OF THE ACCUMULATOR
10101010
CONTENTS OF OPERAND REGISTER
11001100
F[.N:\L STATE OF THE ACCUMULATOR
10001000
There are seven logical AND instructions

that allow any CPU fregister to be used as the
AND operand. They are as follows.

NDA 240
NDB 241
NDC 242
NDD 243
NDE 244
NDH 245
NDL 246

The contents of the operand register is
not altered by an AND logical instruction.

There is also a logical AND instruction
that allows a word in memory to be used as
an operand. The address of the word in mem-
ory that will be used is pointed to by the con-
tents of the H and L CPLU registers,

NDM 247

And finally there is also a logical AND
IMMEDIATE type of instruction that will use
the contents of the word immediately follow-
ing the instruction as the operand.

NDI 044

The next group of boolean logic instrue-
tions direct the computer to perform the
logical OR operation on a bit-by-bit basis
with the accumulator and the contents of a
CPU register or a word in memory. The
logical OR operation will result in the
accumulator having a bit set to a logic one if
either that bit in the accumulator, or the
corresponding bit in the operand register is
a logic one. Since the case where both the
accumulator bit and operand bit are a one
also satisfies the criteria, that condition will
also result in the accumulator bit being left
in the one state, If neither register has a logic
one in the bit position, then the accumulator
bit for that position remains in the zero
state. An example illustrates the results of

a logical OR operation.

INITIAL STATE OF THE ACCUMULATOR

11 0510

CONTENT OF THE OPERAND REGISTER

11001100

FINAL STATE OF THE ACCUMULATOR
: i R e [2 T
There are seven logical OR instructions

that allow any CPU register to be used as
the OR operand.

ORA 260
ORB 261
ORC 262
ORD 263
ORE 264
ORH 265
ORL 266

By using the H and L registers as pointers
one can also use a word in memory as an OR
operand.

ORM 267

There is also the logical OR IMMEDIATE
instruction.

ORI 064

As with the logical AND group of instruc-
tions, the logical OR instruction does not
alter the contents of the operand register.

The last group of boolean logic instruc-
tions is a variation of the logic OR. The
variation is termed the EXCLUSIVE OR
logical operation. The EXCLUSIVE OR oper-
ation is similar to the OR except that when
the corresponding bits in both the accumu-
lator and the operand register are a one then
the accumulator bit will be cleared to zero.
Thus, the accumulator bit will be a one after
the operation only if just one of the registers
(accumulator register or operand register) has
a one in the bit position. (Again, the opera-
tion is performed- on a bit-by-bit basis.) An
example provides clarification.

INITIAL STATE OF THE ACCUMULATOR

10101010

CONTENTS OF THE OPERAND REGISTER

19150901 100

FINAL STATE OF THE ACCUMULATOR
01100110
The seven instructions that allow the CPU

registers to be used as operands are shown
next.

XRA 250
XRB 251
XRC 252
XRD 253
XRE 254
XRH 255
XRL 256

The instruction that uses registers H and L
as pointers to a memory location is:

XRM 257

And the EXCLUSIVE OR IMMEDIATE
type instruction is:

XRI 054

As in the case of the logical OR operation,
the operand register is not altered except for
the special case when the XRA instruction is
used. This instruction, which directs the com-
puter to EXCLUSIVE OR the accumulator
with itself, will cause the operand register,
since it is the accumulator, to have its con-
tents altered (unless it should happen to be
zero at the time the instruction is executed).

34

This is because, regardless of what value is in
the accumulator, if it is EXCLUSIVE OR’ed
with itself, the result will be zero! The
example below illustrates the specific
operation.

ORIGINAL VALUE OF ACCUMULATOR

10101010

EXCLUSIVE OR’ed WITH ITSELF

10101010

FINAL VALUE OF ACCUMULATOR

00000000

This only occurs when the logical
EXCLUSIVE OR is performed on the
accumulator itself. It can be shown that
the results of performing the logical OR or
logical AND between the accumulator and
itself will result in the original accumulator
value being retained.

INSTRUCTIONS FOR ROTATING THE
CONTENTS OF THE ACCUMULATOR

It is often desirable to be able to shift the
contents of the accumulator either right or
left. In a fixed length register, a simple shift
operation would wresult in some information
being lost because what was in the MSB or
LSB (depending on in which direction the
shift occured) would be shifted right out of
the register! Therefore, instead of just shifting
the contents of a register, an operation
termed ROTATING is utilized. Now, instead
of just shifting a bit off the end of the regis-
ter, the bit is brought around to the other end
of the register. For instance, if the register is
rotated to the right, the LSB (least significant
bit) would be brought around to the position
of the MSB (most significant bit) which
would have been vacated by the shifting of
its original contents to the right. Or, in the
case of a shift to the left, the MSB would be
brought around to the position of the LSB.

The carry bit (C flag) can be considered as
an extension of the accumulator register. The
instruction set for this machine allows two
types of ROTATE instructions. One con-
siders the carry bit to be part of the accumu-
lator register for the rotate operation. The
other type does not. In addition, each type
of rotate can be done either to the right or to
the left.

It should be noted that the rotate opera-
tions are particularly valuable when it is de-
sired to multiply a number or divide a num-
ber. This is because shifting the contents of
a register to the left effectively multiplies
a binary number by a power of two. Shifting
a binary number to the right provides the
inverse operation.

ROTATING THE ACCUMULATOR LEFT

RLC 002

Rotating the accumulator left with the
RLC instruction means the MSB of the
accumulator will be brought around to the
LSB position and all other bits will be shift-
ed one position to the left. While this in-
struction does not shift through the carry
bit, the carry bit will be set by the status
of the MSB of the accumulator at the start
of the ROTATE LEFT operation. (This
feature allows the programmer to determine
what the MSB was prior to the shifting opera-
tion by testing the C flag after the rotate
instruction has been executed.

ROTATING THE ACCUMULATOR LEFT
THROUGH THE CARRY BIT

RAL 022

The RAL instruction will cause the MSB
of the accumulator to go into the carry bit.
The initial value of the carry bit will be
shifted around to the LSB of the accumu-
lator. All other bits are shifted one position
to the left.

ROTATING THE ACCUMULATOR
RIGHT

RRC 012

The RRC instruction is similar to the
RLC instruction except that now the LSB of
the accumulator is placed in the MSB of the
accumulator. All other bits are shifted one
position to the right. Also, the carry bit
will be set to the initial value of the LSB of
the accumulator at the start of the operation.

ROTATING THE ACCUMULATOR RIGHT
THROUGH THE CARRY BIT

RAR 032

Here, the LSB of the accumulator is
brought around to the carry bit. The initial
value of the carry bit is shifted to the MSB of
the accumulator. All other bits are shifted a
position to the right.

It should be noted that the C flag is the
only flag that is altered by a rotate instruc-
tion. All other flags remain unchanged.

JUMP INSTRUCTIONS

The instructions discussed so far have all
been *direct action™ instructions. The pro-
grammer arranges a sequence of these types
of instructions in memory. When the program
is started the computer proceeds to execute
the instructions in the order in which they
are encountered. The computer automati-
cally reads the contents of a memory loca-
tion, executes the instruction it finds there,
and then automatically increments a special
address register called a PROGRAM
COUNTER that will result in the machine
reading the information contained in the
next sequential memory location. However,
it is often desirable to perform a series of
instructions located in one section of mem-
ory, and then skip over a group of memory
locations and start executing instructions in
another section of memory. This action can
be accomplished by a group of instructions

that will cause a new address value to be
placed in the PROGRAM COUNTER. This
will cause the computer to go to a new sec-
tion of memory and then execute instruc-
tions sequentially from the new memory
location.

The JUMP instructions in this computer
add considerable power to the machine’s
capabilities because there are a series of
“conditional” JUMP instructions available.
That is, the computer can be directed to
test the status of a particular FLAG (C, Z,
S or P). If the status of the flag is the de-
sired one, then a JUMP will be performed.
If it is not, the machine will continue to
execute the next instruction in the current
sequence. This capability provides a means
for the computer to make *‘decisions” and
to modify its operation as a function of the
status of the various flags at the time that a
program is being executed.

In a manner similar to IMMEDIATE types
of instructions, the JUMP instructions require
more than one word of memory. A JUMP in-
struction requires three words to be proper-
ly defined. (Remember that IMMEDIATE
type instructions required two words.) The
JUMP instruction itself is the first word. The
second word must contain the LOW
ADDRESS portion of the address of the word
in memory that the PROGRAM COUNTER is
to be set to point to, which is the new loca-
tion from which the next instruction is to be
fetched. The third word must contain the
HIGH ADDRESS (sometimes referred to as
the PAGE) of the memory address that the
program counter will be set to. That is, the
high order portion of the address in memory
that the computer will JUMP to in order to
obtain its next instruction.

THE UNCONDITIONAL JUMP
INSTRUCTION

JMP 1X4

Note: The machine code 1X4 indicates that
any code for the second octal digit of the
machine code is valid. It is recommended as a
standard practice that the code ‘0’ be used.
Thus, the typical machine code would be 104,

Remember, the JUMP instruction must be
followed by two more words which contain
the LOW, and then the HIGH (PAGE) portion
of the address that the program is to JUMP
to!

JUMP IF THE DESIGNATED FLAG
IS TRUE (CONDITIONAL JUMP)

JTC 140
JTZ 150
JTS 160
JTP 170

As with the UNCONDITIONAL JUMP
instruction, the CONDITIONAL JUMP in-
structions must be followed by two words of
information. The LOW portion, then the
HIGH portion, of the address that program
execution is to continue from if the jump is

35

executed. The JUMP IF TRUE group of in-
structions will only jump to the designated
address if the condition of the appropriate
flag is TRUE (logical one). Thus, the JTC
instruction states that if the carry flag (C) is
a logical one (TRUE) then the jump is to be
executed. If it is a logical zero (FALSE) then
program execution is to continue with the
next instruction in the current sequence of
instructions. In a similar manner the JTZ
instruction states that if the ZERO FLAG is
TRUE then the jump is to be performed.
Otherwise the next instruction in the present
sequence is executed. Likewise for the JTS
and JTP instructions.

JUMP IF THE DESIGNATED FLAG
IS FALSE (CONDITIONAL JUMP)

JFC 100
JFZ 110
JFS 120
JFP 130

As with all JUMP instructions these in-
structions must be followed by the LOW
address then the HIGH address of the mem-
ory location that program execution is to
continue from if the jump is executed. This
group of instructions is the opposite of the
jump if the flag is true group. For instance,
the JFC instruction commands the com-
puter to test the status of the carry (C) flag.
If the flag is FALSE (a logic zero), then the
jump is to be perfm‘me;gi. If it is TRUE, then
program execution is to continue with the
next instruction in the current sequence of
instructions. The same procedure holds for
the JFZ, JFS and JFP instructions.

SUBROUTINE CALLING INSTRUCTIONS

Quite often when a programmer is develop-
ing computer programs the programmer will
find that a particular algorithm (sequence of
instructions for performing a function) can be
used many times in different parts of the pro-
gram. Rather than having to keep entering the
same sequence of instructions at different
locations in memory, which would not only
consume the time of the programmer, but
would also result in a lot of memory being
used to perform one particular function, it is
desirable to be able to be able to put an often
used sequence of commands in just one
location in memory. Then, whenever the par-
ticular algorithm is required by another part
of the program, it would be convenient to
jump to the section that contained the often
used algorithm, perform the sequence of in-
structions, and then return back to the main
part of the program. This is a standard prac-
tice in computer operations. A frequently
used algorithm can be designated a
SUBROUTINE. A special set of instructions
allows the programmer to CALL a
SUBROUTINE. In other words, specify a
special type of JUMP command that will
eventually allow the program to RETURN
to the original “jumping” point in the pro-
gram. A second type of instruction is used to
terminate a SUBROUTINE. This special
terminator will cause the program to revert
back and pick up the next sequential in-

struction in memory that immediately fol-
lows the original CALLING instruction. A
great deal of computer power is provided by
the instruction set in this machine that allows
one to CALL and RETURN from SUB-
ROUTINES. This is because, in a manner
similar to that provided for the CONDI-
TIONAL JUMP instructions, there are a
number of CONDITIONAL CALL and
CONDITIONAL RETURN commands in the
instruction set.

Like the JUMP instructions, the CALL in-
structions all require three words in order to
be fully specified. The first word is the CALL
instruction itself. The next two words must
contain the LOW and HIGH portions of the
starting address of the subroutine that is
being “called.”

When a CALL instruction is encountered
by the computer, the CPU will actually save
the current value of the PROGRAM COUNT-
ER by storing it in a special PROGRAM
COUNTER PUSH-DOWN STACK. This
stack is capable of holding six addresses plus
the current operating address. What this
means is that the machine is capable of
“nesting” up to seven subroutines at one
time. Thus, one can have a subroutine, that
in turn calls another subroutine, that in turn
calls another one, up to seven levels, and the
machine will still be able to return to the
initial calling location. The programmer must
ensure that subroutines are not nested more
than seven levels otherwise the PROGRAM
COUNTER PUSH-DOWN STACK will push
the original calling address(es) completely out
of the push-down stack. The program could
then no longer automatically return to the
initial calling location.

The RETURN instruction which termi-
nates a SUBROUTINE only requires one
word. When the CPU encounters a RETURN
instruction it causes the PROGRAM COUNT-
ER PUSH-DOWN STACK to “pop” up one
level. This effectively causes the address saved
in the stack by the calling routine to be taken
as the new program counter. Hence, program
execution returns to the calling location.

THE UNCONDITIONAL CALL
INSTRUCTION

CAL 1X6

This instruction followed by two words
containing the LOW and then the HIGH order
of the starting address of the SUBROUTINE
that is to be executed is an UNCONDITION-
AL CALL. The subroutine will be executed
regardless of the status of the FLAGS. The
next sequential address after the CAL in-
struction is saved in the PROGRAM COUNT-
ER PUSH-DOWN STACK.

THE UNCONDITIONAL RETURN
INSTRUCTION
RET 0X7

This instruction directs the CPU

to unconditionally “pop™ the program
counter push-down stack UP one level.

Program execution will continue from
the address saved by the subroutine
calling instruction.

CALL A SUBROUTINE IF THE
DESIGNATED FLAG IS TRUE

CTC 142
CTZ 152
CTS 162
CTP 172

In a manner similar to the conditional
JUMP IF TRUE instructions, these instruc-
tions (which must all be followed by the
LOW and HIGH portions of the called sub-
routine'’s starting address) will only perform
the ‘“‘call” if the designated flag is in the
TRUE (logical one) state. If the designated
flag is FALSE then the CALL instruction is
ignored. Program execution then continues
with the next sequential instruction.

RETURN FROM A SUBROUTINE IF THE
DESIGNATED FLAG IS TRUE

RTC 043
RTZ 053
RTS 063
RTP 073

These one word instructions will cause a
SUBROUTINE to be TERMINATED only if
the designated flag is in the logical one
(TRUE) state.

CALL A SUBROUTINE IF THE
DESIGNATED FLAG IS FALSE

CFC 102
CFZ 112
CFS 122
CFP 132

These instructions are the opposit of the
previous group of calling commands. The sub-
routine is called only if the designated flag
is in the FALSE (logical zero) condition.
Remember, these instructions must be fol-
lowed by two words which contain the
LOW and HIGH part of the starting address
of the SUBROUTINE that is to be executed
if the designated flag is FALSE. If the flag
is TRUE, the subroutine will not be called
and program operation will continue with
the next instruction in the current sequence.

RETURN FROM A SUBROUTINE IF THE
DESIGNATED FLAG IS FALSE

RFC 003
RFZ 013
RFS 023
RFP 033

These one word instructions will termi-
nate a subroutine (“pop™ the program count-

er stack UP one level) if the designated flag
is FALSE. Otherwise, the instruction is ig-
nored and program operation is continued
with the next instruction in the subroutine.

THE SPECIAL RESTART SUBROUTINE
CALL INSTRUCTIONS

There is a special purpose instruction avail-
able that effectively serves as a one word
SUBROUTINE CALL. (Remember that it
normally requires three words to specify a
subroutine call.) This special instruction
allows the programmer to call a subroutine
that starts at any one of eight specially
designated memory locations. The eight
special memory locations are at locations:
000, 010, 020, 030, 040, 050, 060 and 070
on page zero. There are eight variations of the
machine code for the RESTART instruction.
One for each of the above addresses. Thus,
the one word instruction can serve to CALL a
SUBROUTINE at the specified starting loca-
tion (instead of havirlg two additional words
to specify the starting address of a sub-
routine). It is often convenient to utilize a
RESTART command as a quick CALL to an
often used subroutine. Or, as an easy way to
call short *“‘starting” subroutines for large pro-
grams. Hence, the name for the type of in-
struction. The eight RESTART instructions,
in their mnemonic and machine code forms,
along with the starting address associated with
each one is listed below.

RSTO 005

00 000
RST 1 015 00 010
RST 2 025 00 020
RST 3 035 00 030
RST 4 045 00 040
RST 5 055 00 050
RST 6 065 00 060
RST 7 075 00 070

INPUT INSTRUCTIONS

In order to receive information from an ex-
ternal device the computer must utilize a
group of special signal lines. The typical
‘8008’ computer is designed to handle up to
eight groups (each group having eight signal
lines) of INPUT signals. A group of signals is
accepted at the computer by what is referred
to as an INPUT PORT. The computer con-
trols the operation of the INPUT PORTS.
Under program control, the computer can be
directed to obtain the information that is on a
group of lines coming in to any INPUT
PORT. When this is done the information
will be transferred to the accumulator.
Various types of external equipment, such as
an electronic keyboard or measuring instru-
ments, can be connected to the INPUT
PORTS. The INPUT PORTS are typically re-
ferred to as having numbers from ‘0’ to ‘7.’
The typical mnemonics and machine codes
for INPUT instructions are shown next.

INP 0 101
INP 1 103
INP 6 115
INP 7 117

It may be interesting to note that the
machine codes for input ports increase by a
factor of two for each port. Note too, that
while the mnemonic for an input instruction
has two parts, the machine code only requires
one word in memory. It is also important to
realize that while an input instruction brings
data into the accumulator it does not affect
the status of any of the CPU flags!

OUTPUT INSTRUCTIONS

In order to output information to an ex-
ternal device the computer utilizes another
group of signal lines which are referred to as
OUTPUT PORTS. A Typical ‘8008" system
may be equipped to service up to twenty-four
OUTPUT PORTS. (Each OUTPUT PORT ac-
tually consists of eight signal lines.) An
OUTPUT instruction causes the contents of
the accumulator to be transferred to the sig-
nal lines of the designated OUTPUT PORT.
The output ports are normally designated by
octal numbers in the range 10 to 37. The list
below shows the typical mnemonics used to
specify an OUTPUT PORT along with the
associated machine code. (It may be
interesting to note again that the machine
code increases by a factor of two for each
port.)

OUT 10 121
OUT 11 123
OUT 21 141
OUT 36 175
OUT 37 177

An OUTPUT instruction only requires one
machine code word (even though the mne-
monic is typically specified in two parts).
OUTPUT PORTS are connected to external
devices that one desires to have the computer
transmit information to, such as a CRT dis-
play, or machinery that is to be placed under
computer control.

THE HALT INSTRUCTION

There is one more instruction in the
‘8008" instruction set. This instruction
directs the CPU to stop all operations and
to remain in that state until an INTERRUPT
signal is received. In a typical ‘B008" system
an INTERRUPT signal may be generated by
an operator pressing a switch or by an exter-
nal piece of equipment sending an elec-
tronic signal to the CPU. This instruction
is normally used when the programmer
desires to terminate a program or when it
is desired to have the computer wait for an
operator or external device to perform some
action. There are three machine codes that
may be used for the HALT command.

HLT 000
HLT 001
HLT 377

The HALT instruction does not affect
the status of the CPU flags.

INFORMATION ON INSTRUCTION EXECUTION TIMES

When programming for ‘‘real-time’ appli-
cations it is important to know how much
time each type of instruction requires to be
executed. With this information the pro-
grammer can develop “timing loops™ or de-
termine with substantual accuracy how much
time it will take to perform a particular series
of instructions. This information is espec-
ially valuable when dealing with programs
that control the operations of external
devices which mdght require events to occur
at specific times.

The following table provides the nominal
instruction execution time for each -cate-
gory of instruction used in an ‘8008’ system.
The precise time needed for each instruction

depends on how close the master clock has
been set to a nominal value of 500 kilo-
hertz. The table shows the number of cycle
states required by the type of instruction
followed by the nominal time required to
perform the entire instruction. Since each
state executes in four microseconds, the
total time required to perform the instrue-
tion as shown in the table was obtained by
multiplying the number of states by four
microseconds. By knowing the number of
states required for each instruction the pro-
grammer can often rearrange an algorithm
or substitute different types of instructions
to provide programs that have events occur-
ing at precisely timed intervals.

INSTRUCTION EXECUTION TIME TABLE

LOAD DATA FROM A CPU REGISTER TO ANOTHER CPU REGISTER 5 20 Us
LOAD DATA FROM A CPU REGISTER TO A LOCATION IN MEMORY 7 28
LOAD DATA FROM MEMORY TO A CPU REGISTER 8 32
LOAD IMMEDIATE DATA INTO A CPU REGISTER 8 32
LOAD IMMEDIATE DATA INTO A LOCATION IN MEMORY 9 36
INCREMENT OR DECREMENT A CPU REGISTER s 5 20
ARITHMETIC/COMPARE BETWEEN ACCUMULATOR & A CPU REGISTER 5 20
ARITH/COMPARE BETWEEN ACCUMULATOR & A WORD IN MEMORY 8 32
IMMEDIATE.ARITHMETIC AND COMFARE 8 32
BOOLEAN OPS BETWEEN ACCUMULATOR AND CPU REGISTERS 5 20
BOOLEAN OPS WITH ACCUMULATOR & A WORD IN MEMORY 8 32
IMMEDIATE BOOLEAN OPERATIONS 8 20
ROTATE THE ACCUMULATOR 5 20
JUMP AND CALL COMMANDS (UNCONDITIONAL) 11 44
JUMP/CALLS WHEN CONDITION NOT SATISFIED (CONDITIONAL) 8 36
JUMP/CALLS WHEN CONDITION SATISFIED (CONDITIONAL) 11 44
RETURN (UNCONDITIONAL) 5 20
RETURN WHEN CONDITION NOT SATISFIED (CONDITIONAL) 3 12
RETURN WHEN CONDITION SATISFIED (CONDITIONAL) 5 20
RESTART COMMAND 5 20
OUTPUT COMMAND 6 24
INPUT COMMAND 8 32
HALT COMMAND 4 16

Chapters 2 and 3 of MACHINE LANGUAGE PROGRAMMING FOR THE “8008” (and
similar microcomputers) will appear in BYTE's August and September issues,

respectively B

37

